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TRFz'AIRPUNE DYNAMIC-RESPONSEFACTOR 

By Csrl R. Huss and James J. Donegan 

A study of the effect of the frequency of the lowest wing structural 
mode on the airplane center-of-gravity dynsmic-response factor was 
made by employing simplified transfer functions. It was found that the 
simplified transfer function adequately predicted the maxLmum value of 
the incremental normal-load-factor response at the airplane center of 
gravity to isosceles triangle pulse elevator inputs. 

The results of the study are presented in the form of preliminary 
design charts which give a comparison between the dynamic-response 
factors of the semirigid case and the airplane longitudinal short-period 
case and between the dynamic-response factors of the semirigid case and 
the steady-state value of the airplane longitudinal short-period 
response. These charts can be used to estimate the first-order effects 
of the addition of a wing-bending degree of freedom on the short-period 
dynamic-response factor and on the maximum dynamic-response factor when 
compared with the steady-state response of the system. The results show 
that a structurally damped frequency greater than six t-es the short- 
period dsmped frequency till not affect the dynamic-response factor 
of the semirigid short-period response at the airplane center of gravity 

, and that, when the frequencies sre equal, the semirigid dynamic-response 
factor may be as much as 1.6 times that of the short period. The results 
also show that the maximum dynamic-response factor can be as much as 2.4 
times the steady-state response of the system, depending upon the ratio 
of the natural frequencies of the structural and short-period modes and 
upon the damping of the two m&es. 

INTRODUCTION 

As airplanes have increased in size, speed, and flexLbility, anal- 
ysis of the loads, stresses, and deflections associated with the 
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longitudinal short-period mode has become increasingly more complex. This 
complexity results from the need to include not only the aeroelastic 
effects associated with structural deformation but also the dynamic 
effects of structural vibration. Considerable effort is currently being 
expended in the field of dynamic analysis and it has become customary to 
express the dynamic effects of both aeroelasticity and structural vibra- 
tion in terms of a dynamic-response factor which relates the dynamic 
response of the airplane to its steady-state response. The effects of 
flexibility are generally associated with a specific response at the 
center of gravity of the airplane, especially in the preliminary design 
stages; however, these effects at other points on the airframe (such 
as a wing-tip deflection or a strain in a particular structural member) 
are often of interest. 

.- 

The present-day use of thin high-aspect-ratio wings on large 
high-speed airplanes has resulted in a lowering of the frequency of the 
wing structural vibratory modes. As a consequence of this reduction in - 
stiffness, the frequency of the lowest wing vibratory mode is approaching -. 
the frequency of the airplane short-period mode. The proxFmity of the 
frequencies of these two modes has a pronounced effect on the airplane 
dynamic-response factor. Although this effect has been known qualita- - 
tively for some time and studies of specific-configurations have been 7 : 
made, there has been no sFmple numerical guide for estimating the 
effects of this design trend. Possibly, this lack is a natural conse- 
quence of the nature of the mathematical transfer functions which Y 
relate the airplane center-of-gravity response to an incremental change 
in elevator angle. These transfer functions are of a type which is 
usually regarded as being more adaptable to specific studies than to 
generalization. 

The purpose of this study was to determine whether the results 
obtained by using the.complete transfer functions could also be obtained 
to a high degree of approximation with related but greatly simplified 
transfer functions and whether this simplification was of such a nature 
as to permit generalization of the results. The present paper illustrates 
the nature and validity of the simplification of the transfer function 
used and assesses as to both magnitude and trends the effect of the 
proximity of the frequencies of the lowest wing structural mode and the 
airplane short-period mode on the airplane incremental normaL load fatz- 
tor at the airplane center of gravity. The results are summar ized In 
the form of design charts which, it is believed, will be of value in 
the preliminary design stages of an airplane. 
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SYMBOIS 

%h 

&zh 

%h 

a6h 

generalized nondimens&onal mass-coupling term between 2 
and h degrees of freedom, a@SC 

generalized nondimensional mass term of flexible-wing mode 
between elastic wing and h degree of freedom, %hp 

generalized nondimensional mass-coupl3ng term between 9 
and h degrees of freedom, &Bh P E2 

generalized mass-coupling term between Z and h degrees 

of freedom, 2s,b"/a {mfw[fz(d] - S'&'$(Y)) dy,, slugs 

generalized mass term of flexible-;wIng mode between elastic 

wing and h degree of freedom, 2 

2qfZ(Y)f#(Y) + I’, 
generalized EESS-coupling term between 8 and h degrees of 

freedom, 0 / 
2s," 2L -S*wf,(~) + I'~&Y) - m',2f,W + 

b wing span along elastic axis, ft 

cOJ Cl, . . . c9 dimensional transfer-function coefficients for 
semirigid case 

C’l, C’p . . . C’g nondimensional transfer-functfon coefficients 
for semirigid case 

?F 

cm 

force coefficient due to elastic-wing deflection, Fh qS 
I 

airpLane pitching-moment coefficient about the center of 
gravity, M/qSE 

cN airplane normal-force coefficient at the airplane center of 
t3=VitY, FN/qs 
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c 

DC d 
dt! 

c 

wu mean aerodynamic chord, ft 

% 

Ep 

F 

FN 

kinetic energy, ft-lb _-- 

potential energy, ft-lb 

force, lb 

airplane normal force at center-of gravity, positive down- 
ward, lb 

spanwise bending-mode shape along wing elastic axis 

spanwise twisting-mode shape about wi 
7 

elastic axis per z unit tip bending deflection, radians ft 

acceleration due to gravity, ft/sec2 .- -. P 

wing-tip deflection, h/c, chords 

wing-tip deflection of elastic axis due to bending, positive 
downward, ft 

I' section moment of inertia, m1*2, slug-ft2/ft 

t - 

KO, Kl, K2, 9, K8, KS dFmensiona1 rigid transfer-function coefficients 

Kfl, K12, KIT, K’8, K19 nond3mensional rigid transfer-function coeffic- 
ients 

KY radius of gyration about Y-axis, chords 
- 

k reduced angular frequency, CUE/V 

2 longitudinal distance from airplane center of gravity to wing 
elastic axis (function of spanwise location), positive 
forward, ft 

M pitching moment about center of- gravity, ft-lb - 

mA? rnf, s mass, slugs 

m’W 
section mass, slugs/ft I' 
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S 

S’ 

8 

T 

Ti 

t 

V 

incremental normal load factor at air-plane center of gravity 
(positive upward), g units 

dynamic pressure, 
radians/set 

lb/sq ft; also, pitching angular velocity, 

wing plan-form area, sq ft 

section mass moment about elastic axis, ml*, slug-ft/ft 

Laplace transform variable 

period of oscillation, 2R 
7 set 

duration of triangular input, set 

time, set 

velocity, fps 

y, X longitudinal displacement, positive forward, f-t 

Y 

Z 

lateral or spanwise displacement, f-t 

vertical displacement, of airplane center of gravity, positive 
downwsrd, ft 

z vertical wing deflection of elastic axis due to wing 
bending, positive downward, ft 

a angle of attack positive when wing leading edge is up, radians 

q), r;, - l l r5 dimensional quasi-steady transfer-function coefficients 

rt 1' r12, . . . rf 
5 

nondimensional quasi-steady transfer-function 
coefficients 

Y dynamic-response factor at airplane center of gravity, 
(%.yn)maxlan,tatic 

incremental elevator deflection, positive when trailing edge 
is UP> deg 

8 angle of pitch about airplane center of gravity, positive 
nose up, radians . . 

9 A sweep angle of elastic wing, deg 

Y 



6 NACA TN 4250 

nondimensional airplane mass, mA/Psc 

damping parameter, percent of critical damping 

P mass density of air, slugs/cu ft 

angle of twist of airfoil in plane perpendicular to elastic 
aXiS, positive when wing leading edge is up, radians 

- 
- 

u) angu1s.r frequency, radians/set 

Subscripts: 

A airplane 
- 

d. dsmped 

ayn dynamic 

f fuselage; structural 

h flexible-wing degree of freedom -7 
‘Y - 

rE8.x maximum 
w 

n natural 

0 exposed wing 

sP short period 

sr semirigid 

W WiW3 

Z vertical degree of freedom 

t3 pitching degree of freedom -. - 

Dots are used to indicate differentiation with respect to time; for * 
example, 6 = d@/dt. The subscripts a, 4, h, h, @;., H, and 
6 indicate differentiation with respect to the subscripts; for example, 

cNa 
= dC&z. L 
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GlZNERAL CONSIDERATIONS 

In the preliminary design stage of an airplane, the designer can, 
with presently available methods, estimate the longitudinal short-period 
dynamic-response characteristics of the center of gravity of a given 
configuration for rigid and quasi-steady airframes. The rigidair- 
frame is defined in this paper as a structure that does not deform or 
vibrate, the quasi-steady airframe as one which can deform but not 
vibrate, and the semirigid airframe as one which can both deformand 
vibrate. The problem that the designer is faced with in this preliminary 
design stage is the effect of the airframe vibratory modes (psrticulsrly 
those of the wing since it is usually the most flexible)-on the 
quasi-steady airframe longitudLna1 short-period dynamic response. The 
methods available for calculatin@; these effects are usually rather com- 
plex or require information which would probably not be readily avail- 
able at this stage of the design. The designer needs, therefore, some 
means of estimating these effects which are simple and are based on 
parameters which would be available. 

In this paper such means are presented in the form of preliminary 
design charts which can be used to estimate the effects of the proximity 
of the frequencies of the lowest wing structural mode and the airplane 
short-period mode (quasi-steady case) on the dynamic response at the 
center of gravity of the semirigid airplane. The des2gn charts are 
based on the philosophy that in the preUminsry design stage of a par- 
ticular configuration the designer will be able to compute either the 
maximum incremental normal load factor for the quasi-steady case or the 
steady-state value of the incremental normal load factor of the quasi- 
steady case. The charts are restricted to estimating the effects of 
only the lowest vibratory wing bendfng mode on the incremental normal- 
load-factor response at the center of gravity to elevator control inputs. 
All other structural parts are considered rigid. The charts sre further 
restricted to a comparison of dynamic-response factors which are defined 
as 

7 = (%yn),/%tatic 

where bYAlax 
is the maximum amplitude of the first peak of the 

time history of the incremental normal load factor at the center of 
@;ravity and &tatic is the steady-state amplitude of the time history 
of incremental normal load factor. 
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* 
METHOD OF ANALYSIS 

The procedure followed in this paper for studying the effect of the 
proximity of the frequencies of the lowest structural wing mode and the 
short-period mode on the incremental normal-load dynamic-response fac- 
tor at the airplane center of gravity was patterned after that of refer- 
ences 1 and 2. Dynsmk systems representing the incremental~normal- 
load-factor response at the center of gravity to an elevator input and 
defined mathematically by transfer functions were excited by various 
isosceles triangular inputs and the maximum values of the resulting time 
responses were expressed as ratios to the steady-state response factors. 
This procedure was followed for systems having the quasi-steady mode coupled 
with a structural mode (semirigid case) and for the quasi-steady mode 
alone for a wide range of configurations and frequencies and dsmpings of 
the two modes. The dynamic-response factors thus obtained for the system 
with two modes were then eqressed as ratios to those obtained for the 
system with one mode to determine the effects in question. 

Although triangular inputs were used in this study, it is believed 
that comparable results would be obtained for other shapes of pulse- 
type inputs since the process of expressingthe semirigid results as 
ratios to the short-period results tend to eliminate the effects of 
different-shaped inputs. Isosceles triangle inputs were used in this 
paper for the following reasons: they approximate in shape severe 
pilot-imposed inputs; their frequency content could be easily varied by 
changing their duration Ti; their frequency content could be made 
sufficient to excite the wing structural mode; and they could be easily 
handled mathematically both by manual calculation and by automatic elec- 
tronic calculation. 

For existing airplanes with high-aspect-ratio, thin, flexible wings, 
the lowest structural frequency is usually associated with wing bending 
and, therefore, wing bending was selected as the lowest structural mode 
for this investigation. The theoretical system chosen for this study 
consisted of three degrees of freedom: freedom in pitch, vertical trans- 
lation, and wing bending. The equations of motion developed by Lagrange's 
method describFn@; this system have been previously established and are 
presented in reference 3. For convenience.they are also restated in 
appendix A of this paper. . . 

The assumptions made in this study included the following: lin- 
earity, no change in air-plane forward velocity, small perturbations, 
and rigidity of the fuselage and tail assemblies. These assumptions may 
be summarized by the assumption that the motions of sn aircraft with 
flexible wings are described by the equations given in appendix A. It 
was further assumed that the aircraft is statically and dynamically 
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stable longitudinally, that is, that the aircraft short-period mode 
and structural mode are oscillatory and are dsmped. 

As mentioned earlier 3n this section, the dynamic systems used in 
this paper were defined mathematically by transfer functions relating 
the incremental normal load factor at the center of gravity to an incre- 
mental elevator input. Some of the terms in the transfer functions 
could be eliminated with small loss in accuracy and the analysis was 
made by using these simplified transfer functfons. In order to show 
this relationship, it is first necessary to define the complete transfer 
funct&ons and then demonstrate the skplifications that can be made to 
obtain the s5mplified but practical transfer functions. Hereafter in 
this paper the word "complete" will refer to transfer functions containing 
all the terms and the word "simplified" will refer to the transfer func- 
tion with some of its terms omitted. 

Complete Transfer Functions 

The complete transfer functions relating the incremental normal 
load factor at the center of gravity to the incremental elevator angle 
input for the semirigid case, the quasi-steady case, and the rigid case 
were obtained from the equatfons of motion given in appendix A. 

Semirigid case.- The transfer function for the semirigid case 
which defines a system that has both wfng quasi-steady deformation and 
wing vibration is, in nondfmensional form, 

c’gs4 + Q-s3 -I- C’p2 + c’8s + c’g 

s4+ C’ 1 s 3 f cr2s2 + Cl36 f C’4 

where the definitions of the C!' coefficients are given in appendix B. 
In dimensional form the transfer function may be written as 

c5s4 + cgs3 + c7s2 t 53s + c 
9 

3 + c2s* + c 
(3) 

3 
s + c4 

where the conversion factors of C1 to C are given in appendix .C. 
The static value of this transfer function is seen to be Cg/C!4. The 
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characteristic equation may be factored into two quadratic equations 
by Graeffe's method and written as 

&s) = 
c5s4 + cgs3 + c7s2 + C8S + cg : 

C 
s2 + 25,* ql ( jsps + PrJsJp2 + 2~fPn~fs + Wf2] 

(4) 

Quasi-steady case.- As indicated in reference 4 by letting rates 
of wing-tip deflectjon D2h = Dh = 0 in the equations for the semirigid 
case, the transfer function for the quasi-steady case may be formed. 
In this case the wings can deform but do not vibrate. The transfer 
function for the quasi-steady case may be written as 

r3s2 + r&s + r5 
gys, = s2 

e + r,s + r, 
(5) 

where the r coefficients are defined in appendixes B and C. The static 
value of this function is seen to be r5/r2’ It is interesting to note 
that the static value of the semirigid case is equal to the static value 
of the quasi-steady case Cg/C4 = IY5/r2, since TOP2 = CoC14 and 

r rf 0 5 =. coc’g* 

Rigid case.- By letting D2h = Dh = h = 0 in the equation for 
the semirigid case, the transfer function for the rigid case may be 
formed and written as 

$4 
e 

= 
Kp2 + K8t3 + 5 

s2 + $" + K2 
(6) 

Y 

. 
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where the K coefficients are defined Fn appendixes B and C. Although 
the transfer functions of the rigid case and the quasi-steady case have 
the same form, the transfer coefficients of the two cases differ in that 
the transfer coefficients of the rigid case sre modified by the effects 
of wing deformation to give the quasi-steady-case transfer coefficients. 
The static value of this function is . 

Simplified Transfer Functions 

in order to determine whether the number of terms in the complete 
transfer functions could be reduced, studies of 15 airplane configura- 
tions were made on an electronic analog cowuter by us?ng the cqlete 
transfer functions for the semirigid case (eq. (4)) and the quasi-steady 
case (es. (5)). The configurations used covered a range of wing sweep 
angles from O" to 6Oo, of ratios of wing mass to airplane mass from 0.15 
to 0.50, of airplane center-of-gravity positions from 0.25c to 0.45E, 
and of dynamic pressures from 100 to 800 pounds per square foot. These 
studies indicated that some of the terms in the numerator of the trans- 
fer functions did not contribute amreciably to the maximum value of 
the time history of incremental normal load factor for triangular inputs 
but merely acted as phase shifters and thus were not required for the 
purposes of the present study. Typical results of these studies are 
shown for the semirigid case in figures 1 and 2 and for the quasi-steady 
case in figures 3 and 4. 

Semirigid case.- The contribution of the numerator terms of the 
semirigid transfer function with each numerator coefficient equal to 
unity is shown in figure l(a). In figure l(b) the contribution of each 
of these same numerator terms is shown for typical values of the coef- 
ficients. From plots such as these it is seen that the Cg term makes 
the most important contribution to the maximum value of the incremental 
normal load factor. 

Calculations of incremental normal-load-factor time response to 
isosceles triangle inputs were then made by using only the Cg term 
in the semirigid transfer function. These time histories were compared 
with time histories obtained from the complete transfer function 
(eq. (4)), to determi ne how well the simplified transfer function 
term only in the numerator 1 

( Cg 
described the maximum value of the time 

response of incremental normal load factor for triangular inputs. 
Typical comparisons are shown in figure 2(a) for the case when the fre- 
quencies of the modes are different and in figure 2(b) for the case 
when the frequencies of the modes are equal. 
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On the basis of such computations it was determined that the complete 
semirigid-transfer function (eq. (4)) could be reduced to 

f&b’ =. c9 

e s2 + 25,P(%)sps + o) 
( Jsp’J F’ + 2ef (Q,S + PJf~ 

(7) 

and still adequately describe the maximum value of the time history of 
incremental normal load factor for triangular inputs. The use of the 
word "adequately" in this paper means generally to within about 3 per- 
cent and rarely more than about 10 to 15 percent. 

Quasi-steady case.- A similar procedure was used to determine the 
contribution of the terms in the numerator of the quasi-steady transfer 
function (eq. (5)) to the maxti value of the time response of the 
incremental normal load factor. In figure 3(a) the contribution of the 
numerator terms of the quasi-steady transfer function with each numerator 
coefficient equal to unity is shown. In figure 3(b) the contribution 
of each of these same numerator terms is shown for typical values of the 
coefficients. In this case it is seen that r 

5 
is the important term. 

Typical comparison of a tFme history obtained from the reduced transfer 
function r ( 

term only in the numerator 
> with that obtained from the 

complete trLsfer function (eq. (5)) is shown in figure 4. 

From comparisons such as that shown in figure 4, it was determined 
that the complete quasi-steady transfer function (eq. (5)) could be 
reduced to 

$b) = s2 
r5 

e + rls + r2 
(8) 

and still adequately describe the maximum value of the time history of 
incremental normal load factor for triangular inputs. 

Semirigid short-period case.- Since the denominator of equation (8) 
does not equal the short-period part of the denominator of equation (7), 
it was found convenient to define another transfer function. This trans- 
fer function will be called the semirigid short-period case snd is ._ 
defined as s? 
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gbl = s2 
e 

+ 2L.,(%i/ + (TJsp2 

where the denominator of equation (9) is identical to the short-period 
part of the denominator of equation (7) and the constant A is equal to 

-+ 

( 1 
CD 

nf 

The use of this semirigid short-period transfer function as a 
basis of comparisonrather than the quasi-steady case reduced the compu- 
tations to practical proportions. If the quasi-steady case had been. 
used, it would have-been necessary to estimate a new set of derivatives 
which make up the transfer-function coefficients for each new configura- 
tion and flight condition. However, by defining the semirigid short 
period, it was necesssry to choose only the damping and frequency of 
the two modes without regard to the derivatives which determine these 
parameters. 

Actually, the semirigid short-period case is practically equal 
to the quasi-steady case since the tiping and frequency of the two cases 
are almost the same for a wide range of configurations and q values. 
(See figs. 5 and 6.) A comparison of the natural frequencies of the 
semirigid short-period case with those of the quasi-steady case for a 
wide range of configurations and q values is shown in figure 5. A 
similsr comparison of the damping of the semirigid short-period case 
with that of the quasi-steady case is shown in figure 6. The points 
shown in figures 5 and 6 were computed from the data of reference 3. 
The data of figure 6 indicate that at the higher values of dynamic 
pressure the damping of the short-period case is greater than that 
of the quasi-steady case. Therefore the maximum value of the 
response as well as the maxFmum dynamk-response factor obtained 
from the short-period case would always be less than that of the quasi- 
steady case. Thus the ratios of maxirmrm dynamic-response factors 
obtained by comparing the semirigid case with the short-period case 
would always be greater than (on the conservative side) or the same as 
those obtained by comparing the semirigid case with the quasi-steady 
case. 

Rigid case.- The complete rigid transfer function (eq. (6)) could 
also be reduced to 
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k(s) = 5 

a6e s2 + Kp ‘-5 
(10) 

L 

in order to define the maximum value of the time history of incremental 
normal load factor for triangular inputs. _. 

Typical Calculations Illustrating Method 

The method used in this study and the preparation of the desired 
preliminary design charts involved a large-number of calculations and 
plots, typical samples of which are shown in figures 7 and 8. 

In order to obtain the maximum possible dynsmic-response factor. 
for the range of the variables, it was first necessary to calculate the 
time response to triangular inputs of varying duration (different fre- 
quency content) for each system (a particular combination of the vari- 
ables). A sample of these calculations is shown in figure 7 for both 
the semirigid short-period and the semirigid cases. Some of these compu- 
tations were carried out on automatic electronic computing equipment, some I- 
on desk-type computers, and some were carried out by using the tables of 
references 5 and 6 in conjunction with automatic electronic computing 

- equipment. The dynamic-response factor defined previously as equation (1) 
was determined for each case by picking the value of the first peak 
of the time histories (see, for example, fig. 7 for Ti = 0.4) and 
dividing-it by the static value for the particular system being con- 
sidered. 
Tipsp ( 

These results were then plotted against the period ratio 
ratio of the time base of the input to the natural period of 

the short-period mode) in order to determine the maximum dynamic-response 
factor for each case. A typical plot of this procedure is shown in. 

.. figure 8. The data of figure 8 are for the-same cases as those of fig- 
ure 7, the four points shown in figure 8 having been computed from the 
results shown in figure 7. 

From plots such as that shown in figure 8, it was possible to 
ascertain the magnitude and trends of the effects of the proximity of 
the frequencies of the lowest structural mode and the airplane longitu- 
dinal short-period mode on the incremental normal-load dynsmic-response 
factor at the airplane center of gravity. The plotting of these calcula- 
tions resulted in the desired preliminsry design charts. 
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Range of Variables 

The results of this study are believed to be valid over a range of 
vsriables as follows: dynsmic pressure from 100 to 800 pounds per 
square foot, wing sweep angles from 0' to 60°, ratios of wing mass to 
airplane mass of 0.15 to 0.50; center-of-gravity location from 0.25 
to 0.45 me&n aerodynamic chord, ratios of damped wing lowest struc- 
tural frequency to dsmPed airplane longitudinal short-period fre- 
quency from 1 to 15, and dsmping of the wing lowest structural mode and 
airplane longitudinal short-Period mode from 0 to 95 percent of critical 
Wing- 

REEXJLE ANDDISCUSSION 

The results of this paper are summsr ized in the form of preliminary 
design charts. As mentioned previously, these design charts were obtained 
from plots such as those of figure 8 covering a complete range of combi- 
nations of the variables. 

The chsrt given as figure 9 is a plot of the ratios of maximum 
dynamic-response factors (+lax/(~sP)max 

against the ratio of-the 
structural-mode natural frequency divided by the semirigid short-Period 
natural frequency, the demping of the structural mode being held con- 
stant at 2 percent of critical damping. The data of figure 9 were 
reduced to a more compact form by converting the abscissa to a ratio of 
the damped frequency of the structural mode and the dsmped semirigid 
short-period frequency. This simplification is given as the design 
chart shown in figure 10. 

The design chart shown in figure 10 indicates that, if the damPed 
structural frequency and the damPed semirigid short-period frequency 
are equal, the maximum dynamic-response factor of the semirigid case 
will be about 1.6 times the value of the maximum dynamic-response factor 
for the semirigid short-period case. It can also be seen that, when the 
ratio of the dsmped structural frequency and the damped semirigid short- 
period frequency is greater than about 6, there is no increase in the 
maximum dynamic-response factor of the semirigid case over the value for 
the semirigid short-period case. 

Increasing the damping of the short-Period mode of the s.emirigid 
case while holding the damping of the structural mode constant also 
results in a decrease in the maximum dynamic-response factor of the 
semirigid case. This effect can be seen from the results shown in 
figure 9. 

r 
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In order to investigate the effect of structural damping on the 
air-plane dynamic-response factor, calculations were made for a semirigid 
short-period mode with a natural frequency of 3.162 radians per second 
and a dsmping of 38 percent of critical damping coupled to a structural 
mode having variable damping of 0 to 95 percent of critical. damping and 
a damped frequency equal to the semirigid short-period damped frequency 
(2.926 radians per second) and equal to 5 times the semirigid short- 
period damped frequency. Dynsmi c-response-factor ratios for these cases 
are plotted against critical damping of the structural mode in fig- 
ure 11. The result shown in figure l.l indicates that, for a given 
value 'of dsmping of the short-period part of the semirigid case, an 
increase in the damping of the structural mode results in a decrease in 
the maximum dynamic-response factor of the semirigid case. 

Thus, the data of figures 9, 10, and 11 indicate that, for a given 
frequency of the short-period mode of the semirigid case, an increase Fn 
the frequency and/or an increase in damping of the structural mode and/or 
an increase in damping of the semirigid short-period mode result in a 
decrease of the msximnm dynsmic-response factor of the semirigid case. 
Figures 9, 10, and 11 would be the ones used by a designer in order to 
obtain an estimate of the increase in the incremental normal-load 
short-period dynamic-response factor at the airplsne center of gravity 
due to the proxFmity of the frequency of the lowest wing structural mode 
to that of the air-plane longitudinal short-period mode. Use of these 
figures presumes, as mentioned earlier, that the designer would be able 
to estimate the maximum longitudinal short-period response and would 
have an estimate of the lowest wing structural frequency and damping of 
the lowest wing structural mode. 

Another design figure which may be useful is one which gives the 
effect of the proximity of the structural natural frequency to the short- 
period natural frequency on the maximum semirigid dynsmic response when 
compared with the semirigid short-period static value. This result was 

. easily obtained by plotting the semirigid maximum dynamic-response 
factor for each case (obtained from plots such as fig. 8 and noting that, 
as pointed out earlier, the static value of the semirigid and semirigid 
short-period cases are equal) against the ratio of the structural 
natural frequency to the semirigid short-period natural frequency. Such 
a plot is presented as figure 12. 

The designer could use the chart given in figure 12 under the same 
restrictions as were mentioned for the previous charts with one excep- 
tion. This exception is that in using this chart the designer would 
need to know only the airplane longitudinal short-period steady-state 
response rather than the maximum short-period response. 
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The effect of the input-time base on the dynamic-response-factor 
ratio may also be of interest and can be determined from plots such as 
that of figure 8. In this case, rather than express the maximum values 
of the dynamic-response factor as ratios, the values of the dynamic- 
response factor of the semirigid and short-period frequencies sre 
expressed as ratios at specific values of the period ratio Ti/ksp and 
are plotted against the period ratio. Typical plots of this dynamic- 
response-factor ratio are shown in figure 13 for three values of short- 
period dsmping. 

The base of the input that gives the maximum dynamic-response 
factor is, of course, different for each case3 depending on the damping 
of the two modes. It was usually greater than about 0.7 of the natural 
period of the short period for all the cases studied in this paper. 
Examination of plots, such as those shown in figure 13, indicate that, 
when compared for the same triangle base, the highest ratio of dynsmic- 
response factor for a frequency ratio of 1.0 will be obtained from 
triangular inputs with a base equal to 0.6 to 0.8 of the natural period 
of the short period. For frequency ratios seater than 1.0, the ratio 
of dynamic-response factors is greatest for triangles with a base equal 
to less than 0.1 of the natural period of the short period. Thus, it 
is difficult to pinpoint a specific triangle base as being the one 
giving the most severe results. 

Since airplanes operate at flight conditions (altitude, airspeed, 
center-of-gravity location) which are constantly changing, the frequency 
ratio for a particular configuration will not be constant. Present- 
day large high-speed airplanes with thin, high-aspect-ratio, flexible 
wings are operating in the frequency-ratio range of roughly 4 to 10. 
The conditions for which the frequency ratio will be a minimum depends 
somewhat on the configuration but, in general, operations at low alti- 
tude, high airspeed, and forwsrd center-of-gravity position should 
result in the lowest frequency ratio. This effect can be seen in fig- 
ure 14where the effect of dynsmic pressure and airplane configuration 
on the proximity of the dsmped frequency of the structural mode to that 
of the short-period mode is given. The data of this figure were con- 
verted from the data of reference 3. 

+ 

The data of figure 14 show that, for airplanes with unswept wings 
or wings with very little sweep, the frequencies of the modes sre brought 
into closer proximity by an increase in the dy-nsmic pressure or, for a 
given dynamic pressure, by moving the center of gravity forward. For 
wings with sweep angles greater than about 30°, these trends of the 
effects of dynamic pressure and center-of-gravity position on the prox- 
imity of the frequencies of the modes are the same. For these cases, 
however, the aeroelastic effects caused by increasing the dynamic 
pressure usually cause the short-period mode to become statically 

-. 
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unstable (indicated in fig. 14 by the frequency ratio going to infinity) 
before the frequencies of the modes can be brought together. Thus, for 
a given configuration the operating conditions will determine the rela- 
tive proximity of the frequencies of the two modes and at what point on 
the abscissas of the design charts the airplane is operating. 

. 

i 

It is well to emphasize that the preliminsry design charts given 
are only meant to give first-order effects and to apply only to systems 
which are statically and dynamically stable. Furthermore, since the 
curve given in figure 10 is an envelope of the maximum values of the 
converted data of figure 9, it will normally give conservative values 
of the ratio of maximum dynamic-response factors. Finally, for a 
particular design problem a detailed analysis including all the variables 
should be made if the "rule-of-thumb" value for the ratio of maximum 
dynamic-response factors given by the chart indicates the possibility 
of a dangerous situation. 

CONCUIDING FiENWCS 

The results of this study of the effect of the frequency of the w 
first wing bending mode on the airplane dynamic-response factor indicated 
that the maximum center-of-gravity load-factor response to a triangular- 
shaped pulse elevator input could be adequately determined by using a m 
simplified transfer function for the semirigid and quasi-static cases. 
The use of the short-period part of the semirigid transfer function as 
a basis of comparison gave results which were either equal to or on 
the conservative side of those that would have been obtained from the 
quasi-steady transfer function. 

As a result of the reduction in the number of terms obtained by 
using the simplified transfer functions, it was possible to construct 
design charts which provide trends and rule-of-thumb estimates of the 
effect of the frequency of the first wing-bending mode on the airplane 
dynamic-response factor. The charts show that the maximum dynamic- 
response factor for the semirigid case will be 1.6 times that of the 
short-period case when the damped frequencies of the structural mode 
and short-period mode are equal. Furthermore, when the frequency ratio 
is greater than about 6, a lightly damped structural mode has little 
or no effect on the dynamic-response-factor ratio at the airplane 
center of gravity, and, as the dsmping of the structural mode increases, 
the frequency ratio at which the structural mode has negligible effect 
also decreases. Finally, the charts indicate that the semirigid msxi- 
mum dynsmic-response factor can be as much as 2.4 times the steady- 
state value of the system, depending on the damping of the structural 
and short-period modes and on the ratio of the natural frequencies of 
the two modes. 

?i 
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The dynamic-response factor for a particular configuration will 
vary with the operating conditions (principally with dynsmic pressure) 
but should be a maximum at flight conditions of low altitude, high air- 
speed, and forward center-of-gravity position. 

It should be repeated that for a particular design problem a 
detailed analysis should be made if the rule-of-thumb value given by 
the design charts indicates the possibility of a dangerous situation. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., February 21, 19%. 
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APPENDIXA 

EQUAl?IONS OF MOTION 

The equations of motion used in this paper will be given here 
briefly for the convenience of the reader. A complete development of 
these equations is shown in references 3 and 4. The equations are 
derived on the basis of the Lagrangian equation: 

where 

FQ 

kinetic energy 
potential energy 

Q generalized coordinate 

FQ 
generalized force 

The three generalized coordinates used are: 

Z vertical translation 

8 pitching velocity 

h displacement of wing tip due to bending of elastic wing 

- 

(fl) 

For an unswept wing the flexible-wing mode shape consists of 
bending f,(Y); and for a swept wing the flexible-wing mode shape 
consists of bending f,(y) combined with twisting per unit bending 
deflection at the wing tip f@(y). The spanwise bending is usually 
assumed to be parabolic and the spanwise twist, linear. 



. 
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The nondimensional equations of motion thus derived are: 

2%2D2e++hD2H - Cq 

2$.$H + 2A&a. - 8)+2AehD2Q+2Ahhk2E-%a- 
a 

. 
and by definition 

21 

(A31 

(A4) 

(A51 

Simultaneous solution of equations (A2), (A3), (Ah), and (A5) results 
in the semirigid transfer function given as equation (3). 
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NACA TN 4250 

DEFINITION OF TFMNSFEFGFUNCTION COEFFICIENTS 

The transfer coefficients used for the analysis sre defined in 
this appendix. 

Semirigid Case - 

The coefficients for the semirigid case are 

Ahh:, - 
DH 

2AehCmDH 4AehAzh+A& -2~ -2 i- 

)I( 'pzh + $ cFq)+ 4A,(bhcN, - 

I 

. 

+ Aehcsc"DH + 2AZh2c 
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4AZhAQhc% - 4%2phhcN6) 

“6 = & [+t&y6(c~ + "mq) - Ahhc"s(cNm + 'Nq)+ 2A0hcN$AZh - 

%h2) + 2%2cFDhc~gl 

. 

. 
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. 

Quasi-Steady Case 

w 
The coefficients used in the analysis for the quasi-steady case are 

as follows: 

. )(w2 - ?FB)+ Aehcn&cNH + 4%2A~C~E + 
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P2 = $, 
t 

$ 'Na"mg + %(-% - ; 'Nq)](%hk2 - 'FE)+ (cNac% - 

'scNE ' cFs)+ cFa\ f2p - $ 'Nq) + $ 'rnq%2NII 

V 
r’4 =q 

{[ 

h 
2 ?Dz$j 

lC - 2 qj 'J&, ( + 'N q =hhk2-FFJ+ 8 

Rigid Case 

The transfer functions used in the analysis for the rigid case are 
as follows: 

c +c, 
"sNu a ¶ 
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K*7 = &. 'I!&'% + ?Ngcrna 

Klg = 2 
-2cLKY 'NE 

27 
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APPENDIX C 

CONKEBSION FACTORS FOR DlME3?SIONALIZING THE NONDIMENSIONAL 

TRANSFER-FUNCTION COEF'FICIENTS 

The conversion factors for dimensionalizing the nondimensional 
transfer functions for the semirigid case are as follows: 

- 

'2 
c2 = 5 'C' 0 C 2 

V3 
3 = : i ) ct3 

4 
C 
4 0 

= g C'4 

c5 = Cl5 

i ) 
2 v C’ 

c7=, 7 

cg = V3 0 z C’8 

6 

V4 cg = z 0 Cl9 

The conversion factors for dimensionalizing the nondimensional 
transfer functions for the quasi-steady case are as follows: 

( 1 
2 

r2= c g ri2 r4 = 
I i $ rf4 

(I 
2 

r = 2 p 
5 c 5 

, 
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The conversion factors for dimensionalizing the nondimensional 
transfer functions for the rigid case are as follows: 

K3 = z 
0 
v 'K' 
C 3 
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(a) Contribution of numerator terms with coefficients equal to unity. 
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(b) Contribution of numerator terms for typical values of the coeffi- 
cients: 

c9 
c5 

= 563-25; Cl8 = 50.376; C7 = 0.604; c6 = -0.504; and 
= -0.0394. 

Figure l.- Contribution of individual numerator terms of the semirigid 
c 

transfer function b&(s) = 5 
s4 + c65’ + c7s2 + CBS + cg 

e 64 -I- Cl63 f c2s2 + c3s + c4 
to the 

complete response to a unit-smplitude isosceles triangle input 
with Ti = 1.0, cl = 15.4-414, c2 = 116.8380, 

c3 = 350.6639, and 
c4 = 554.5269. 
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- SimWted (Cd 

(a) Modes apart; (Ud)f/(Lud)8p = 2*44' 

- - Complete 

(b) Modes together; (Ud)f/('ud)sp = I*'* 

Figure 2.- Comparison of the response to a unit-amplitude isosceles 
triangle input with Ti = 1.0 obtained from usF"gcthe simplified 

semirigid transfer function 2$(s) = 9 
e s4 + cp3 + c2s2 + c3s + c4 

and the complete semirigid transfer function 
c2s4 f c6s3 + c7fi2 + c86 -k cg 

8 
s4 + c1s3 + c2s2 + c 3 

s + c4- 

_- 

-. 
-- 
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(a) Contribution of numerator terms with coefficients equal to unity. 
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(b) Contribution of numerator terms for typical values of the coeffi- 
cients: r5 = 7.093; r4 = 0.054; ala ‘T3 = -0.0355. 

Figure 3.- Contribution of individual numerator terms of the quasi-steady 
r3s' + r4s + r 

transfer function g(s) = 5 to the complete response 
e s2 + r,s + r2 

to a unit-amplitude isosceles triangle input with Ti = 1.0, 
rl = 3.4328, and r2 = 6.9934. 
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Figure 4.- Co~~~~arfson of the response to a unit-amplitude isosceles triangle input with 
Ti = 1.0 obtained from using the simplified quasi-steady transfer function 

&b-l = 
I’ 5 and the complete quasi-steady transfer function 

e s2 + rls + r* 

r s2 -t r&s + rs 
g-b) = 3 . 

e s2 + r16 + r2 

, . . , 
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Figure 5.- Comparison of the natural frequency of the se&rigid short- 
.period mode with that of the quasi-steady mode at a -center-of-gravity 
location of 0.25C. 
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.gcre 6.- Comparison of critical damping of the semirigid short-r 
mode with that of the quasi-steady mode at a center-of-gravity 
tion 0f 0.25c. 
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Figure 7.- !Cyplcal center-of-gravity jncremental normal-load-factor time res onses of the 
semIrIgid short-period and semirIgId ca6es with a frequency ratio 

(%I f/b) sp 
of 1.9 to isosceles triangle inputs. 

P+J*p = 3.162; es, = O-38; (s), = 6-O; 
5 = 0.02. 
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Figure 8.- Typical plot of dynamic-response factor 7 against period 
semirigid short-period case and semirigid case with a frequency ratio 
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Figure 9.- ETfect on the ratio of maxbum dynamic-response factors of the prox!unkty of the 
structural natural. frequency to the semirigid short-period natural frequency. 5, = 0.02. 



_ 

5sp 
0 0 cl .16 

0 .25 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

Figure lO.- Effect on the ratio of maximm dynamic-response factors of the proximity of the 
structural damped frequency to the semirigld short-period damped frequency. 5, = 0.02. 
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Figure 11.- Effect of dampjng of the structural mode on the ratio of maxlmum dynamic-response 
factors for two ratios of the damped structural and semirigid short-period frequencies for 
semirigid short-period dsmping of 0.3. 
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Figure 13.- CI$-picfLl plots of the effect of the period ratio on the ratio 
of dynamic-response factors for various frequency ratios. 
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Figure lb.- Effect of aYnsmic pressure q on the frequency ratio 

od) f/(md sp 
for various wing sweep angles, wing-mass-to- 

airplane-mass ratios, and center-of-gravity locations. 
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Figure lb.- Concluded. 


